Environmental Sounds Recognition System, Using the
Speech Recognition System Techniques

Omar Aranda , Héctor M. Pérez , Mariko Nakano

Instituto Politécnico Nacional
SEPI-ESIME Culhuacan
Av. Santa Ana, 1000, Col. San Francisco Culhuacan, C. P. 04430, Coyoacan, México D. F.
arandauribe@calmecac.esimecu.ipn.mx

Abstract. This paper describes an environmental sounds recognition system using
LPC-Cepstral coefficients as feature vectors and an artificial neural network
backpropagation as recognition method. LPC-Cepstral data are totally dependents
of the sound-source from which are computed. This system is evaluated using a
database containing files from four different sound-sources under a variety of
recording conditions. The training patterns used in the network-training ad testing
processes, are extracted from the Discrete Fourier transform magnitude of the
LPC-Cepstral matrices. The global percentages of verification and identification
obtained in the network-testing process are 90.42% and 89.5%. Basically the idca
here is to apply the techniques found in speech recognition systems to an
environmental sounds recognition system.

Keywords- Artificial Neural Network, LPC-Cepstral Analysis, Discrete Fourier
Transform.

Resumen. Este articulo describe un sistema de reconocimiento de sonidos
ambientales utilizando como vectores caracteristicos los coeficientes LPC-Cepstral y
una red ncuronal artificial backpropagation como método de reconocimiento. Los
datos LPC-Cepstral son totalmente dependientes de la fuente de sonido de la cual
son extraidos. Este sistema es evaluado con una base de datos que contiene archivos
de cuatro fuentes de sonido diferentes grabados bajo diversas condiciones. Los
patrones de entrenamiento son extraidos de la magnitud de la transformada de
Discreta de Fourier. Los porcentajes de verificacion e identificacion obtenidos en la
etapa de prueba de la red son 90.42% y 89.5% respectivamente. Bisicamente la
idea es aplicar las técnicas utilizadas en los sistemas de reconocimiento de hablante
a un sistema de reconocimiento de sonidos ambicntales.

Palabras clave- Red Neuronal Arificial, Anélisis LPC-Cepstral, Transformada
Discreta de Fourier.
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1. Introduction.

Signals that humans can hear are one of the most important sources of informatic.
Humans obtain much information from not only voices but also non-verb§l sounds.
panoply of sounds in our daily lives, called “environmental sounds”, are important
to understand the surroundings. However, they have been little studied e'xcept as nov
interfering with speech recognition systems. Much less effort has been directed towas
systems capable of detecting, isolating, and identifying the panoply of sounds that .ﬁll
every-day acoustic environment. In recent years, as the development of robots which
behave in the real world, machine tools which have the intelligence to !ook )
themselves and their peripheral devices, and failure detection in electro domestic devis

several studies on recognition of environmental sounds appeared [1-4]. These stud
mainly focused on recognition of sound sources.

For recognition, environmental sounds have the following problems to be solved:

1. Environmental sounds are so various and changeful that they are hard to
previously.

2. The environmental sounds are not regular in time.

Problem 1 means that we can use the parametric models as strategy for the environmen™
sounds recognition process, one kind of this parametric model is the artificial neu”
netjwork backpropagation that uses a supervised learning algorithm. Problem 2 means

as In speech recognition systems, sounds must be made regular or stationary on a

Interval, after this specific features can be extracted from these sounds and a neur
networ!( can be trained (recognition process). The idea here is to apply the methodolo-
found in speech recognition systems to verification and identification of environmen™

sounds using LPC-Cepstral analysis and an artificial neural network back-propagation
recognizing method.

2. Proposed System.

Figure 1 shows the proposed system. This system consist of four sequential process¢
first a common database of environmental sounds is obtained, after this a segmentatic
algorithm is applied to each token (file) of this database; third LPC-Cepstral features

extracted from each segmented file and the DFT is computed from these coefTicien

finally the DFT magnitude is computed and a training strategy is adopted. The decision
taken at the final process and a recognition percentage is computed.
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Fig. 1 Proposed environmental sounds recognition system.

2.1 Database Acquisition.

A database containing four different sound-sources was created, files were obtained from
an online database. Files were used in the environmental sounds recognition system
develop and evaluation. This Database contains 320 files (items). An endpoint algorithm
was applied to each signal; this means that we separate portions of the signal stream
containing the sound from the portions containing only background noise, which
represents computational load to the system. Files are digitalized at 64,000 bits/second.
Background sound levels were typically 25 to 30 dB below signal levels.

2.2 Signal Processing.

Figure 2 shows the applied processes in the signal analysis. With this signal analysis a
high efficiency of feature extraction is obtained, this facilitates to the neural network the
recognition process, this means that higher percentages of verification and identification
can be obtained.
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Fig. 2 Shows the methodology used in the signal analysis process
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2.2.1 End-pointing Algorithm.

In time domain, magnitude, energy, power, maximums and minimums can btﬁ: col;npuf
from which, the energy is used. Once the energy was calculated, a reference is obtaine
with this reference the signal can be limited.

In the discrete case the energy is defined as:

o )
E[n] = Zsz[n]

Now, a gamma constant is defined, this constant indicates the number of samples tak
from the signal.

In our case the sampling frequency is 8000 Hz. The following step is to make
relationship between the sound signal and the gamma constant:

Eln)=[(1-7)*E,, 1+ [r* »?] =

To each file stored in the database an end-pointing algorithm was applied. In order tg
the signal two thresholds of 20 and 10 the maximum energy ml{St be defined,
corresponds to the percentage taken form the signal. This algorithm compares

thresholds with each sample of the energy until a sample is greater or equal to the
thresholds, indicating the signal’s beginning.

2.2.2 Frame Blocking and Windowing,

A

The sound signal, S[n], is blocked into frames of 240 samples that corresponds to

msec, in which voice is considered stationary [6], with adjacent frames being separate’

by 120 samples. The use of frames implies three parameters: frame size, frame increme-
and frame overlapping:

(C))
S, =I,+O,

To the sequence of analysis frames generated from each end-pointed file was applied
windowing algorithm, this means that a 240-point Hamming window was used:

- n ©)
S.[n]= S[n]wn]
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Where 0 <7< N =1, N is the number of samples in the analysis frame (240 samples)
and W([n]is a Hamming window. The frame advancement rate was chosen to yield

frames that overlapped at least 50%, and so that the total number of frames between the
signal endpoir}ts was at least 64, specifically one second of each signal was analyzed. We
used a Hamming window, a typical window used for the autocorrelation method of LPC.

This windowing has repercussion in the time responses of the algorithms used but the
recognition percentages are improved [6].

2.2.3 LPC Parameters and LPC-Cepstral Coefficients.

In each window 17 LPC coefficients were calculated with Levinson-Durbin recursion.
LPC-Cepstral coefficients can be derived directly from the set of LPC coefficients using
the recursion:

C[n] = -a[n]- —l’; "Zgl kC[kla[n - k] ©

k=1

Where n>0, Cy=a,=1Lk> pand a[n]represents the linecar prediction

coefficients. The number of frames generated for each signal was of 64. The result in
effect was that each signal was represented by a 17 by 64 array of Cepstral coefficients,
with the 64 rows representing time and the 17 columns representing frequency.

A 64-point DFT was then calculated for each column in the matrix and the first 32 points
of this symmetrical transform retained. The resulting square matrix is a two dimensional
Cepstral representation of the input signal. Each column corresponds to a particular
spectral frequency, and ach row corresponds to a temporal frequency. The first column
contains the DFT of the power envelope of the signal. The first row contains the DFT of
the average signal spectrum. The first element of the first column contains the average
signal power level. It’s typical of two-dimensional Cepstral representations of acoustic
signals, and certainly for our signals, that this corner element is the largest component and
the size of the components in the first row and first column are larger than the size of
interior matrix components. After this the DFT magnitude for each column in the matrix
is computed. The LPC-Cepstral coefficients, which are the Fourier transform
representation of the spectrum, have been shown to be more robust for speech recognition
than the LPC coefficients; in this case we applied this method.
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2.3 Feature Extraction and Neural Network Learning and Training.

Sets of two coefficients were selected from the 1024 elements of each DFT magnitu
matrix to serve as feature vectors for use in sounds verification and identification.
coefficients chosen were take form the first and second columns of the two dimensior
Cepstral matrices.

The used model is an artificial neural network backpropagation. The traditional
backprdpagation algorithm [5] is used. For each sound pattern, 50 sound files were

in the network training process. The sound samples are first normalized so that
average magnitude becomes zero and the standard deviation is one. Clusters, or classf
were formed by grouping the feature vectors for each type of sound. For the netwe.
training, the ideal number of hidden-layer neurons was chosen from the experimes™
work. The hope, of course, is that all the samples of each sound will cluster together
that space and that cluster for different sounds will be rejected.

3. Results.

Two neural networks, per sound-source, were trained, because of we used two featur.
vectors from the DFT magnitude matrix of each sound-source. Four stages (one per netr
network) were necessary for the network training and each stage corresponds to each
stored in the database. 32 input-layer neurons were necessary for the neural netwes
training, 10, 15 and 20 hidden-layer neurons were used in this neural network and the
results were obtained with 20 neurons; 1 output-layer neuron, per network, was necessa-
for verify the source-sounds and 4 output-layer neurons in the identification process.
training process for verification and identification consist of a matrix with the traini=.
patterns, each network had to be trained with all patterns from all sound-sources.

3.1 Neural Network Testing.

Once the network has been trained, is used in the verification and identification process<¢
in this case, the sounds produced by cars, boats, motorcycles and airplanes.
verification and identification percentages for each tested neural network can
visualized in table 1 and table 2. Sounds-sources that have similarity, as motorcycles, car
and airplanes, present higher percentages of false verification than those that don’t ha:
similarities.
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Table 1. Percentage of Verification for each Artificial Neural Network (ANN).

Sound-Sources Pcrcentage of Venfication Corresponding to Testing Patterns

Training T:l“:l““' ANN ANN ANN ANN

Pattems o Boats Airplanes Cars Motorcycles
Boat's Sounds 100% 98 33% 96.66% 0% 0% 0%
Airplane’s Soynds 100% 88.33% 3.33% 76.66% 10% 10%
Car's Sounds 100% 86.7% 3.33% 10% 73.4% 13.33%
Motorcycle’s Sounds 100% 88.33% 0% 6.66% 10% 76.66.%
% False Venfication 2.22% 5.55% 6.66% 7.77%
Global % of venfication. 90.42%

The percentage of verification that corresponds to the neural network of boats (96.66%),
4.44% corresponds to patterns verified as false, this means that the output-layer neuron

is zero.

Table 2. Percentages of Identification for each sound source.

Sound Sources g.:lsl::\};s ';::aii:i'::;’aucms ?Tz"esl‘ing ;al(cms Total
Airplanc’s Sound 30 100% 78% 89%
Motorcycle's Sound 30 100% 76% 88%
Car's Sound 30 100% 9% 89.5%
Boat's Sound 30 100% 83% 91.5%
Global % 100%% 79% 89.5%

Some LPC-Cepstral coefficients are illustrated in Fig. 3 to 6 and here is demonstrated the
difference between sound-sources and the similarity between sounds that come from the

same source. Those differences facilitate to the neural network

identification processes.

the verification and

Fig. 3 LPC-Cepstral CoefTicients from airplane engine.
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Fig. 4 LPC-Cepstral Coefficients from boats impeller.
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Fig. 5 LPC-Cepstral Coefficients from car engine.
- >
b — — ——
-l B~ e S e e — — v X
82 ——I
™~ 30“—-—1-.9\ 20 20 S ZO €O
T o s D e e p— ;_,A_ et T =< vt S
3 =]
™ a m . VO =0 50 <o [Z<] e S e
- - T s 5 -.- T = ek -I
g o — e P e v+ i e - — = =
=L <
- a ey Exa) sl a0 (=2 = —
gul‘“‘-“ e T
zuL ) ¥
- 0‘7(' AL D

Fig. 6 LPC-Cepstral Coefficients from motorcycle engine.

4. Conclusions.

In this paper was proposed an environmental sounds recognition system based in the LPC
Cepstral coefficients feature extraction, after this was computed the DFT magnitude
this coefficients matrix. With this matrix an artificial neural network backpropagation
trained. The verification and identification percentage were acceptable, 90.42%
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89.5% although the number of feature vectors was small; specifically two feature vectors
were used. The lowest percentages were obtained for seemed sound-sources, as cars,
motorcycles and airplanes. This system seems to be good for some practices applications.
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